
On the Evaluation of Integrals Related 
to the Error Function 

By C. Chiarella and A. Reichel 
1. Introduction. This paper presents some new methods of computing the 

functions 

Uo (X t) = 
1/ fw e(_xy)2/4 tdy 

(1.1) Uo(x, t) = (4t 1/2 1 + y2 

1 e-(Zy) 2/4 ty dy (1.2) Vo(x, t) = (4wt)1/2 2 
1 + Y 

to a high degree of accuracy. 
The function Uo(x, t) has been tabulated by a number of authors [1], [2], [3], [4] 

and [5] (the latter authors also tabulate Vo(x, t)). The most accurate tabulation is 
that of Hummer [6]. 

Several methods of computing the related function ez2 erfc z (see (1.5)) have 
been proposed, [7], [8] and [9]. Tabulations have been made for various regions in 
[10], [11], [12] and [13]. 

Of the methods presented below that in Section 2 has the advantage of being 
equally effective for all values of the arguments x and t, while in those of Section 3 
the terms of a series may be generated from recurrence relations after computation 
of the first two terms which involve no transcendental functions. Methods of com- 
putation for tabulation are also presented. 

Before proceeding we note some well-known alternative forms of the functions. 
By taking the Fourier cosine and sine transforms of (1.1) and (1.2) respectively, 
and then inverting, we obtain the forms 

(1.3) Uo(x, t) = f eP2t-Pcos pxdp, 

(1.4) Vo (xi t) = f eP2 t-p sin px dp 

and hence we obtain 

(1.5) Wo(x, t) = Uo(x, t) + iVo(x, t) = f eP2t-P(1-ix)dp = (\{ )eW2 erfc w 

where 

w = (1 -ix)/2t1'2. 

From (1.1) and (1.2) by a simple change of variable we fin(d 
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(1.6) Wo(x, t) /2 j 2 

(1.7) 1/2 2 + 2 _ 4 _ 
t__ __ eU du 

(1.8) 7=( -I eU 

(4rt) u -(x + i) 

From (1.8), we derive the expressions 

( fc c eU2/4"t(u - i)du 
(1.9) UO(x, t) = 

4r)1/2 J0 .U- )2 - 
2 

Vo(x,t) 1/2 &0eU2/4t'du 
(1.10) ( ' ) (4rt)1/2 _-x (U _ i)2 _ x2 

2. An Approximation Formula. A general method for evaluating integrals of the 
form 

rx 
J f(x)e-2 dx 

-x0 

has been proposed by Goodwin [14]. We now apply this method to the form (1.7). 
By the theorem of residues, 

e dZ2 x e-n2h2 7reW2 7reW2 
I -~~~~~~~=h X 2 + 

J(Z2 + W2) ( -2wiz/h) E 2 2 2 2rw/-h) 2erw/h c(z2+w)(1- e ) n= -ccw +nh w (1 -e ) w (1 e-e 

where C is the rectangular contour -R < Re z ? + R1, IR - oo , -ir/h < Iz 
< + ir/h and h is sufficiently small for the contour to include the poles of the 
integrand at z = tiw. 
Also 

2 
dz =-c+/h -2z2dz 

(z2 + W2) (1 -2r) cc+tir/h (Z2 + w2) (1 e-2iz/h) 

cc- Sr/h e Z2 eZ2-2r iz/h 

J-o- i7r,/h Z2 + W 2 (z2 + w2)(1 e-2rz/h dzI 

Since 
fc-ir/h ed =X e-fv2dv - weW 

-xc- i7r/h Z + W - V2 + w2 W 

we have 

(z2 + e2 dz j/ e dv 7re 
2 

wher, afer cnsidrabl =2 -2i/ 
-cc V2 + w2 w 

where after considerable manipulation, we find that 

E(h) = 2e2/h2 {( -i/h)2 + e 
d. 

-00I z i7l )2+ W1 1 
- 27 izh272h 
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Also 

T2/h 00 e-, dz 
JE(h)I < 2 

co 1 -2r iz/h-2,r2/h2 

= 2e | e 2A2 { ?e2-2, iz/h-2cr2/h2 

j__-0 e- {1 + e+ .Idz 

so that 

2V\w7re-,r2/h2 fE(h)j < - e,2/hl (e.g. forh= 2, E(h) ? 1(F15) 

On regrouping terms we have 

U~ t) + iVo(x, t) = h 2hw cc 
en2h2 

o0(X, /)+ioxlt 2 + 1/2 2 2: 
(2.1) w(47rt)+ (4irt) 

1 
n=1 w + n h 

cc2 
wre w 

+ rt)/2 (1 e2rW/h) (4t)1/2 E(h) 

On separating real and imaginary parts and ignoring the error term we obtain 

h h n2h2l (1+ X2 + 4tn2h2) 

(2.2) Uo(, ) Vr( + x ) (-1 - 
+ 4tn2h2) + 4x 

+ A (cos x/2t - e' cos {) 
1- 2e cos x + e2-7 

xh _ 2xh e +n2h2) 

(2.3) / V(1 + x2) V/n-1 (1 
- x2.+ 4tn2h2) + 4x2 

+ A (-sin x/2t + e sin ) 
1-2e cosjx + e27X 

where A = ire (1_)24t/. It, n = r/h-/t and = x (1/2t - ) 

It is found that the formulae (2.2) and (2.3) require less computation than the 
method of Salzer [8], which is equivalent to the method given by Abramowitz and 
Stegun [15]. 

Bounds on the error E(h) are shown in the following table: 

h 1 0.8 0.75 0.6 0.5 

E(h) lo-, 10-10 10-7 10-11 10-15 

If, say, eight-place accuracy were required we would choose h = 0.7 and would 
require eight terms in the infinite series in (2.2) and (2.3). The bounds on the error 
term are independent of the arguments x and t. It is worth noting that the last 
term in (2.2), (2.3) may be ignored for x/2t" /2 large, owing to the exponential term, 
e.g., for x/2t"2 > 5 this term may be neglected with an error of order 10-12. Suit- 
able substitution in a formula given by Luke [19] for the function erfc (az) yields 
the first two terms of our equation (2.1). Luke's method of obtaining the error 
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term is different. In Luke's work the error is effectively a combination of the last 
two terms of (2.1), and his error term in our context depends on the variables x and t. 

3. Derivatives of Uo (x, t), Vo(x, t) and Methods of Computation. We shall use 
the notation 

Un(X, t) = anUO(x, t)/OXn, Vn(X, t) = anVo(xI t)/dXn, 

Wn(X, t) = an[UO(X, t) + iVo(x, t)]/Oxn = Un(xI t) + iVn(X, t) 
We see from (1.3) and (1.4) that 

(3.1) W, (x, t) = i" f pne-T2 tg-itpxdp 

Integrating by parts, we get 

(3.2) Wn(x, t) = - (x + i)Wn-, (x, t)/2t - (n - 1)Wn-2(X, t)/2t, 

so that, on separating real and imaginary parts, we obtain the following recurrence 
relations for Un(x, t) and Vn(x, t): 

(3.3) Un(X, t) -XUn1 (XI t) + 1 Vn- (X t) -( 1) Un2(X, t) 
2t 2t 2t 

(3.4) Vn (X t) = Uni(, t) t V (X t) - (n - 1) V (X t) 

It is easily seen from (3.1) that 

Ui(x, t) = (Vo(x, t) - xUo(x, t))/2t 

V,(x, t) = 1/2t - {Uo(x, t) + xVo(x, t)}/2t. 

These recurrence relations (3.3) and (3.4) are essential for setting up recurrence 
relations for terms in series expansions of Uo(x, t) and Vo(x, t). 

The polynomials vn(x, ax), [16], are defined by 

vn (x -Ca) = an/2Hn (x/(4a) 1/2) 

where Hn(x) denotes the Hermite polynomial. The vn(x, a) have the orthogonality 
condition 

f| ..zx2/4avn -a)v00(x, -a)dx (47ra) 1/2an 2n!6n,n. 

It is convenient to seek an expansion of Wo(x, t) in terms of these polynomials 
in the form 

00 

Wo(x + y, t) - Anvn(x, -a). 
n-0 

Thus, using the orthogonality condition we have 

(4wa) 1/2an2nn! An - f C2/4aVn(XI -a)Wo(x + y, t)dx- 

Using the result 
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_,n n nx2/4co n, x2/4a n 
vn(x, -a) = (-1) 2 a e a (e- )/x' 

we find that 

(4ra)/2n! A = (-1)n 
f d QX92/4a)Wo(x + y, t)dx 

f Wn(x + y, t)e`2/4a da, a > O. 

Using (3.1) we then obtain, 

(4ra) n/2n! An - i,' f p e7p2 t+i p-Pdp fi etP 2/4adx 

which leads to the expression 

.n roo 
A n f p nep2(t+a)P+pv/ydp 

Wn(Y, t + a) 
n! 

Hence we arrive at the result 
_00 v(,-),(,t+a 

(3.5) WO(X + J t) - V -a)W,(y, t + a) 

or 

(3.6) Wo(x + y, t - a) = E v,(x -a)Wn(y, t) 
n=0 n. 

By varying the parameters x, y, t, a in (3.5) and (3.6) we obtain a number of 
well-known expansions. 

If a = 1/4, y = 0 in (3.5) the Hermite expansion is obtained [17]. 
If a = 0, y = 0, and using vn(x, 0) = x8, a Maclaurin expansion in x is recov- 

ered, viz., 

Wo(x, t) = E Wn(0, t)x 

If x = i, y = X - i, a = O in (3.6) we find that 

(3.7) W(X, t) = Zi Wn(X -i, t) 
n0 n! 

with 

WO(X - i, t) = 1/2 e-X2/4t + ieX2 eu2du 

Hummer [6], obtains essentially (3.7) by expanding the factor e-P in (1.3) and 
has used it to evaluate Uo(x, t). 

On putting x = i + X, y = X - i, a = 0 in (3.5) we obtain the Maclaurin 
expansion reported previously by the present authors [18] viz., 
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00 00 

(3.8) Uo(x, t) = E un, Vo(x, t) = E I 
n=O n-0 

where the un and vn are generated by 

uo==V7\r/2t , vO = O, 

ul= -1/2t, vl=x/2t, 

Un = ((1 - X )Un-2 + 2xvn)/2tnX 

vn = ((1 - x2 )vN2 - 2xUn-2)/2tn 

This procedure has the advantage that it is not necessary to generate any 
auxiliary function as is the case in many well-known methods (such as the error 
function) in order to start the computation. 

The following scheme was used by the authors to construct a FORTRAN com- 
puter routine to evaluate Uo(x, t) and Vo(x, t) to 12 decimal places. 

Use the Maclaurin expansion (3.8) for x/2t12 < 2, and the approximation 
formulae (2.2) and (2.3) for 2 < x/2t12 < 7, ignoring the trigonometric terms for 
x/2t"12 > 5. 

For x/2t1 12 > 7, use the asymptotic formula reported by the authors previously 
[19], viz., 

Uo=-l, u1 =-l/x 

un = Un_l/x - 2t(n - )un-2/X 

Uo (x, t) - I1/x E -)n U2n_-1 v (X t) 
E 

-l E 
n 
U2n 

n=l X n-O 

4. Step-by-Step Evaluation. It is often required to evaluate Uo(x, t) and Vo(x, t) 
not just at one particular point but at a series of points. To use the methods de- 
scribed in Section 3 for this purpose would involve unnecessary computation and 
it has been found more convenient to use the Taylor expansions in the form de- 
scribed below. 

Put y = Ax and a = 0 in (3.5) to obtain 

(4.1) Wo (x + Ax, t) = (Ax) W (x, t) 
n=O n. 

Now put x = 0, y = x, a = ?- At and use the results 

v2n(0, t) = (2n)!t'/n!, 2v2n+1 (0, t) = 0, 

and we find that 

(4.2) Wo (x, t ?t At) = E (i1) (At) W2n(* t) 
n=0 n.! 

On separating real and imaginary parts we obtain formulae for Uo(x, t) and 
V0(x, t), viz., 

(4.3) Uo (x + Ax, t) =-0" (Ax)nU (x, t) V (x + Ax, t) = E (Ax) Vn(X, t) 
n=O n! nO n 
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Uo (xI t At) = E (?1l )- (At) U2n (X t) 
(4.4) n-0 n. 

Vo (X t i At) = , (=L I ) (At) 2n (Xi t) 
n=0 n! 

The use of the recurrence relations (3.3) and (3.4) makes (4.3) and (4.4) rela- 
tively simple to use. 

For instance, we could evaluate the functions for t = 10 and x = 10(1) 20, 
say, by using (4.3). The initial values of the recurrence relations at any point are 
obtained from the value of the functions at the previous point. 

With Ax = 1, Eq. (4.3) has been used to obtain a table of eight significant 
figures for x/2t1"2 < 10. It is necessary to regenerate the function afresh (by meth- 
ods of Section 3) at x/2t"2 = 5 in order to maintain the stated accuracy. Con- 
vergence is fairly rapid; about 10 terms or less are required for t > 10. 

Similarly, we may proceed stepwise in t using (4.4). In this case, in order to 
maintain accuracy over an appreciable range of t it is necessary to start at a large 
value of t and proceed back to the line t = 0, (i.e., take At negative). Convergence is 
again fairly rapid for t > 10, 15 terms and less in order to achieve eight significant 
figures. However, as t approaches 1, the number of, terms required make it advisable 
to use the methods of Section 3. 
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